Die Kristallstrukturen von Rh₁₀Ga₁₇ und Ir₃Ga₅

Von

H. Völlenkle, A. Wittmann und H. Nowotny

Aus den Instituten für physikalische Chemie der Universität und der Technischen Hochschule Wien

Mit 2 Abbildungen

(Eingegangen am 4. November 1966)

Die Kristallstrukturen von Rh₁₀Ga₁₇ und Ir₃Ga₅ werden bestimmt und mittels zweidimensionaler *Fourier*-Synthesen verfeinert. Die beiden Verbindungen gehören zu einer Gruppe von TiSi₂-Abkömmlingen der allgemeinen Formel T_nB_{2n-m} (TB_{2-x}). Die Gitterkonstanten betragen für Rh₁₀Ga₁₇ (D⁶_{2d}—P4c2) a = 5,813; c = 47,46 und für Ir₃Ga₅ (D⁸_{2d}—P4n2) a = 5,823;c = 14,20 Å.

The crystal structures of $Rh_{10}Ga_{17}$ and Ir_3Ga_5 have been determined by means of two-dimensional *Fourier* syntheses. The crystal structure of the two compounds of the general formula T_nB_{2n-m} (TB_{2-x}) can be derived from the TiSi₂-type. The lattice parameters were found to be: $Rh_{10}Ga_{17}$ (D_{2d}^6 — $P\overline{4}c2$) a = 5,813; c = 47,46 and Ir_3Ga_5 (D_{2d}^8 — $P\overline{4}n2$) a = 5,823; c = 14,20 Å.

Einleitung

In vorangehenden Arbeiten¹⁻⁷ wurde bereits ausführlich über Abkömmlinge des TiSi₂-Typs der allgemeinen Formel TB_{2-x} $(T_nB_{2n-m})^*$

* T =Übergangsmetall, B =Al, Ga, Si, Ge, Sn.

¹ O. Schwomma, A. Preisinger, H. Nowotny und A. Wittmann, Mh. Chem. **95**, 1527 (1964).

² O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. **95**, 1538 (1964).

³ H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 95, 1544 (1964).
⁴ H. Völlenkle, Dissertation, Universität Wien, 1964.

⁵ A. Wittmann und H. Nowotny, J. Less-common Metals 9, 303 (1965).

⁶ H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 97, 506 (1966).

⁷ H. Völlenkle, A. Preisinger, H. Nowotny und A. Wittmann, Z. Kristallogr., im Druck. berichtet. Die Zusammensetzung der bisher aufgefundenen Verbindungen (15 binär, 20 ternär) liegt im Bereiche $1,25 \leq 2 - x \leq 1,82$ und zeigt eine charakteristische Abhängigkeit von der Valenzelektronenkonzentration (V. E. K.) der beteiligten Elemente. Besonders deutlich tritt dies bei den zahlreichen Verbindungen des Typs Rh(Ga, Ge)_{2-x} und Ir(Ga, Ge)_{2-x} zutage, für die eine lineare Abhängigkeit des Index (2 - x) vom Ga- bzw. Ge-Gehalt festgestellt wurde (vgl. Abb. 3 a in ⁶).

Für folgende Vertreter aus dieser einheitlichen Gruppe liegen verfeinerte Strukturbestimmungen vor (geordnet nach abnehmendem Gehalt an *B*-Element): V_{17} Ge₃₁ (1,82)⁷, Mo₁₃Ge₂₃ (1,77)⁷, Mn₁₁Si₁₉¹ und Cr₁₁Ge₁₉ (1,73)⁷, Ru₂Sn₃ (1,50)² und Rh₁₇Ge₂₂ (1,29)⁸. Im Rahmen der systematischen Untersuchungen über den gesamten Konzentrationsbereich war daher die genaue Strukturbestimmung der Verbindungen Rh₁₀Ga₁₇ und Ir₃Ga₅ von Interesse.

Experimenteller Teil

Bereits früher wurden aus Einkristallaufnahmen folgende Gitterkonstanten ermittelt⁶:

$Rh_{10}Ga_{17} \ a = 5,813 \text{ \AA}$	$Ir_{3}Ga_{5} a = 5,823 \text{ Å}$	
c = 47,46 Å	c = 14,20 Å	
c' = 4,746 Å Unter-	c' = 4,732 Å)	Unter-
c'/a = 0.816 j zelle	$c'/a = 0.813$ } :	zelle.

Als mögliche Raumgruppen ergeben sich D_{2d}^6 —P4c2 für das Rhodiumgallid und D_{2d}^8 —P4n2 für das Iridiumgallid, in Übereinstimmung mit den Bedingungen für das Auftreten bestimmter Raumgruppen bei vorgegebenen Formelindices⁷.

Die Intensitäten der *Weissenberg*-Aufnahmen um [100] (CuK-Strahlung) wurden mit Hilfe einer Vergleichsskala visuell geschätzt. Als Korrekturen wurden der *Lorentz*-Polarisations-Faktor und Absorptionsfaktoren für kugelförmige Kristalle eingesetzt⁹.

Bestimmung und Diskussion der Kristallstrukturen

Aus den bekannten Bauprinzipien dieser Verbindungsklasse konnte für die beiden Gallide ein Strukturmodell abgeleitet werden. Die Übergangsmetallatome besetzen in den Unterzellen die Lagen: 000,1/2 1/2 1/2, 0 1/2 1/4 und 1/2 0 3/4, entsprechend den Ti-Positionen im TiSi₂-Typ. Ir₃Ga₅ enthält 3, Rh₁₀Ga₁₇ 10 derartige, in Richtung der *c*-Achse übereinandergelagerte Unterzellen. Die Galliumatome liegen in der *z*-Richtung **paar**weise auf einem Raster von c/10 (Ir₃Ga₅) und c/34 (Rh₁₀Ga₁₇). Die beiden

⁸ W. Jeitschko und E. Parthé, Acta cryst. [Kopenhagen], im Druck.

⁹ International Tables for X-ray Crystallography, The Kynoch Press, Birmingham, England.

Monatshefte für Chemie, Bd. 98/1

Zellen enthalten somit 40 Rh- und 68 Ga- bzw. 12 Irund 20 Ga-Atome. Die Ga-Atome liegen bei Ir_3Ga_5 auf zwei Szähligen und bei Rh₁₀Ga₁₇ auf acht Szähligen Punktlagen; die jeweils vier verbleibenden Ga-Atome besetzen 4zählige, spezielle Lagen, womit nunmehr die z-Parameter der Ga-Atome auch bezüglich der T—Metall-Unterzelle festgelegt sind.

Bei der Ermittlung der x- und y-Parameter der Ga-Atome wurden die Ergebnisse über die strukturelle Anordnung der Ge-Atome in den Germaniden von V, Cr und Mo herangezogen. Es hatte sich nämlich gezeigt, daß die Positionen der Ge-Atome bei der Projektion auf (001) nahezu äquidistant auf einem Kreis liegen, sofern das c'/a-Verhältnis der Unterzelle

> nicht wesentlich vom Wert für die pseudohexagonale Symmetrie $(c' = a \cdot 1/\overline{3/2})^*$ abweicht. Für die beiden Gallide wurden die Ga-Atome in der Projektion auf die (x, y)-Ebene wieder auf einen Kreis gesetzt und auf dem Umfang gleichmäßig verteilt. Der Kreisdurchmesser wurde in gleicher Größe wie bei Cr₁₁Ge₁₉ angenommen (Abb. 1). Die mit diesen Atomlagen durchgeführten Struk-

Abb. 1. Projektion der Strukturen von Rh₁₀Ga₁₇ (a) und Ir₃Ga₅ (b) auf die (001)-Ebene

 $\alpha/2$

^{*} In der TiSi₂-Struktur liegen pseudohexagonale Schichten parallel zu (001) vor.

Abb. 2. Absolute Fourier-Projektionen auf die (100)-Ebene für $Bh_{10}Ga_{17}$ (a) und Ir_3Ga_5 (b). Die Höhenschichtlinien sind in Abständen von 20 $e/Å^2$ eingezeichnet, beginnend mit 20 $e/Å^2$

Atom	Punktlage	x	y .	2
Rh (1)	2 (c)	0	0	0
(2)	2(b)	0,5	0,5	0,25
(3)	4(g)	0	0	0,0996
(4)	4(g)	0	0	0,2010
(5)	4 (h)	0,5	0,5	0,0510
(6)	4 (h)	0,5	0,5	0,1497
(7)	4 (i)	0	0,5	0.0254
(8)	4 (i)	0	0,5	0,1240
(9)	4 (i)	0	0,5	0,2255
(10)	4 (i)	0	0,5	0.3248
(11)	4 (i)	0	0,5	0,4248
Ga (1)	8 (j)	0,345	0,235	0.0147
(2)	8 (j)	0,796	0,160	0,0450
(3)	8 (j)	0,178	0.315	0.0744
(4)	8 (j)	0,670	0,310	0,1023
(5)	8 (j)	0.287	0,160	0.1314
(6)	8 (j)	0.844	0.244	0.1618
(7)	8 (j)	0.284	0.347	0.1917
(8)	8 (j)	0.666	0.200	0.2214
(9)	4 (e)	0.182	0.182	0.25

Tabelle 1a. Verfeinerte Atomparameter und Temperaturkoeffizienten für Rh₁₀Ga₁₇; $B_{\rm Rh} = 0.90, B_{\rm Ga} = 1.4 \text{ Å}^2$

Tabelle 1b. Verfeinerte Atomparameter und Temperaturkoeffizienten für Ir₃Ga₅; $B_{Ir} = 0.35$, $B_{Ga} = 0.35$ Å²

	Atom	Punktlage	x	y	z	
g.,,12	Ir (1)	2 (a)	0	0	0	
	(2)	2(d)	0	0,5	0,75	
	(3)	4 (e)	0	0	0,3291	
	(4)	4 (h)	0	0,5	0,0861	
	Ga (1)	8 (i)	0,650	0,230	0,0515	
	(2)	8 (i)	0,200	0,160	0,1500	
	(3)	4 (g)	0,825	0,325	0,25	

turfaktorberechnungen ergaben für beide Verbindungen bereits einen R-Wert von 0,17.

Die Kristallstrukturen wurden mit *Fourier*-Synthesen auf (100) verfeinert (Abb. 2). Für die beobachteten (0kl)-Intensitäten wurden folgende *R*-Werte erreicht: 0,088 (Rh₁₀Ga₁₇) und 0,106 (Ir₃Ga₅). Die Berechnungen erfolgten mit den Atomformfaktoren aus den International Tables⁹. Die isotropen Temperaturkoeffizienten wurden graphisch aus den Diagrammen von $\ln(F_0/F_c)$ gegen sin² θ ermittelt. Tab. 1 enthält die verfeinerten Atom-

0	k	1	F	F _c	0	k	1			0	k	1		
0	0	2		1	0	1	34		16	0	3	10	1689	1601
		4		2			36		59			12		9
		6	67	60			38		16			14		18
		8		5			40		9			10		31
		10		20			42		9			18		09
		12		21			44	381	292			20		9 99
		14		4 9			40		4± 04			24	505	44 559
		10		9 19			40 50	184	464			24 96	505	000 A
		10		10			50	404	404			20 99		11
		20 99		6			54		11			20	927	700
		24		93			56		55			32	041	23
		26 26		20	0	2	0	505	390			34		19
		28		95	U	2	2	505	5			36		68
		20		21			4		5			38		48
		32		5			6		17			40		17
		34	870	948			8		16			42		7
		36		6			10		7			44	345	338
		38		10			12		18			46		6
		40	1087	970			14	227	230			48		12
		$\overline{42}$		14			16		2			50	474	459
		44		25			18		6			52		50
		46		124			20	211	189			54		8
		48		6			22		18	0	4	0	979	983
		50		7			24		23			2		1
		52		9			26		8			4		13
		54		9			28		63			6		59
		56		22			30		4			8		34
0	1	0		14			32		5			10		12
		2		10			34	752	694			12		23
		4		36			36		9			14	366	422
		6		4			38		7			16		7
		8		8			40	773	767			18		18
		10	556	578			42		18			20	376	358
		12		13			44		17			22		35
		14		9			46		62			24		14
		16		38			48	******	111			26		17
		18		36			50		10			28		50
		20		5			52		18			30		8
		22		4	0		54		12			32	0.00	10
		24 90	510	437	0	3	U a		15			54 96	203	105
		20		10			Z A	1 4 4	140			00 90		0 1 R
		28 20	670	12			4 6	144	149			90 40	579	623
		32	070	113 97			8		4			42		37
		04					0					~~		

Tabelle 2a. Beobachtete und berechnete Strukturamplituden für Rh10Ga17

Fortsetzung Seite 181

0	k	1	F ₀	F _c	0	k	1	F ₀	F _c	0	k	1	F ₀	Fc
0	4	44	·	10	0	5	30	299	259	0	6	22		23
		46		79			32		47			24		3
		48	196	233			34		13			26		27
		50		11			36		31			28		97
		52		6			38	137	160			30		9
0	5	0		5			40		1			32		17
		2		19			42		5			34	175	179
		4	273	288			44	247	227			36	_	8
		6		6			46		15	0	7	0		10
		8		5	0	6	0	1015	1046			2		26
		10	335	311			2		15			4	191	219
		12		18			4		18			6		7
		14		19			6	124	167			8		4
		16		66			8		47			10	324	337
		18		70			10		10			12		29
		20		12			12		14			14		7
		22		18			14	242	258			16		68
		24	227	254			16		5			18		80
		26		7			18		3			20		1
		28		12			20	221	226					

Fortsetzung (Tab. 2 a)

Tabelle 2b. Beobachtete und berechnete Strukturamplituden für Ir_3Ga_5

0	k	1		$ F_c $	0	k	1	F ₀	F _c	0	k	1	F ₀	F _c																
0	0	2	23	25	0	2	4	63	79	0	4	10	156	96																
		4		2			6	72	69			12	450	422																
		6		12			8		2			14	119	123																
		8		17			10	310	279	0	5	1	93	111																
		10	240	248			12	525	505			3	322	293																
		12	522	541			14	121	100			5	46	51																
		14	63	69			16	65	43			$\overline{7}$	89	103																
		16		41	0	3	1	35	49			9	285	233																
		18		1			3	628	719			11	96	99																
0	1	1		18			5		26			13	112	110																
		3	410	421			7	170	169	0	6	0	546	601																
		5	32	34																			9	516	436			2	74	82
		$\overline{7}$	196	174			11	40	48			4	72	97																
		9	457	431			13	84	103			6	67	91																
		11	45	59			15	326	290			8	48	54																
		13	162	151	0	4	0	527	573			10	33	50																
		15	284	314			2		20	0	$\overline{7}$	1	62	90																
		17	100	98			4	151	150			3	240	238																
0	2	0	466	480			6	158	138			5	33	58																
		2		25			8		37																					

						····		<u> </u>
	,nd,	hl d.		,nd,	hl d. Inde		,ba	hl d. inde
	Absta Å	Anzal		Absta Å	Anzal Abstä		A beta A	Anzal Abst8
Rh (1)—Ga (1)	2.53	4	Rh (10)Ga (5)	2,59	2	Ga (5)—Ga (3)	2,92	1
Ga (2)	2,61	4	Ga (6)	2,53	2	Ga (4)	2,76	1
			Ga (7)	2,50	2	Ga (4)	3,07	1
Rh (2)Ga (7)	3,17	4	Ga (8)	2,66	2	Ga (5)	3,10	1
Ga (8)	2,41	4				Ga (6)	2,86	1
Ga (9)	2,61	2	Rh (11)—Ga (2)	2,43	2	Ga (6)	2,99	1
			Ga (3)	2,62	2	Ga (7)	3,07	1
Rh (3) Ga (2)	3,00	2	Ga (4)	2,42	2			
Ga (3)	2,42	2	Ga (5)	3,08	2	Ga (6)—Ga (4)	3,02	1
Ga(4)	2,64	2				Ga (5)	2,86	1
Ga(5)	2,43	2	Ga (1)Ga (1)	2,88	2	Ga (5)	2,99	1
(-)	,		Ga (2)	2,83	1	Ga (7)	2,87	1
Rh (4)Ga (6)	2,51	2	Ga (2)	3,02	1	Ga (7)	2,99	1
Ga (7)	2,64	2	Ga (2)	3,04	1	Ga (8)	3,02	1
Ga (8)	2,46	2	Ga (3)	3,03	1	. ,		
Ga (9)	2,77	2				Ga (7)-Ga (5)	3,06	1
			Ga(2)— $Ga(1)$	2,83	1	Ga (6)	2,87	1
Rh (5)Ga (1)	2,48	2	Ga (1)	3,02	1	Ga (6)	2,99	1
Ga (2)	2,64	2	Ga (1)	3,04	1	Ga (7)	3,08	1
Ga (3)	2.43	2	Ga(2)	3,01	1	Ga (8)	2,77	1
Ga (4)	2.85	2	Ga(3)	2,77	1	Ga (8)	3,00	1
()	,		Ga (3)	3,10	1	Ga (9)	2,99	1
Rh (6)-Ga (4)	2,69	2	Ga (4)	2,95	1			
Ga (5)	2.49	2	. ,	-		Ga (8)Ga (6)	$_{3,02}$	1
Ga (6)	2.56	2	Ga (3)Ga (1)	3,03	1	Ga (7)	2,77	1
Ga (7)	2.52	2	Ga (2)	2,77	1	Ga (7)	3,00	1
	.,		Ga(2)	3,10	1	Ga (8)	2,93	1
Rh (7)Ga (1)	2.51	2	Ga(3)	2,99	1	Ga (8)	3,02	1
Ga(1)	2.58	2	Ga(4)	2,70	1	Ga(9)	2,75	1
Ga(2)	2.49	2	Ga(4)	3,15	1	Ga (9)	3,13	1
Ga(3)	2.76	2	Ga (5)	2,92	1			
	,			-		Ga (9)—Ga (7)	2,99	2
Rh (8)-Ga (3)	2.79	2	Ga (4)—Ga (2)	2,95	1	Ga (8)	2,75	2
Ga (4)	2.44	2	Ga (3)	2,70	1	Ga (8)	3,13	2
Ga(5)	2.61	2	Ga (3)	3,15	1	Ga (9)	2,99	1
Ga (6)	2,50	2	Ga(4)	2,96	1	. ,		
0,0 (0)	_,		Ga (5)	2,76	1			
Rh (9)-Ga (7)	2.47	2	Ga (5)	3,07	1			
Ga (8)	2,62	2	Ga (6)	3,02	1			
Ga (8)	2.94	2	()					
Ga (9)	2.43	$\overline{2}$						
0.00 (0)	_,							

Tabelle 3a. Interatomare Abstände für $\rm Rh_{10}Ga_{17}~(<3,2~{\rm \AA})$

Mittlerer Abstand Rh—Ga für K. Z. 8: 2,60 Å.

parameter, Tab. 2 die beobachteten und berechneten Strukturamplituden für Rh₁₀Ga₁₇ und Ir₃Ga₅.

	Abstand, Å	Anzahl der Abstände		Abstand, Å	Anzahl der Abstände
Ir (1)—Ga (1)	2,55	4	Ga (1)—Ga (1)	2,93	2
Ga (2)	2,60	4	Ga (2)	2,81	1
× /			Ga(2)	3,00	1
Ir (2)—Ga (2)	2,44	4	Ga (2)	3,07	1
Ga (3)	2,68	2	Ga (3)	3,05	1
Ir (3)—Ga (1)	2,47	2	Ga (2)—Ga (1)	2,81	1
Ga (2)	2,66	2	Ga (1)	3,00	1
Ga(2)	2,95	2	Ga(1)	3,07	1
Ga(3)	2.43	2	Ga(2)	2,98	1
	<i>,</i>		Ga (2)	3.07	1
Ir (4)—Ga (1)	2,53	2	Ga (3)	2.78	1
Ga (1)	2.62	2	Ga (3)	3.16	1
$\operatorname{Ga}(2)$	2.47	2	()		
Ga (3)	2.74	2	Ga(3) - Ga(1)	3.05	2
	,		$\operatorname{Ga}(2)$	2.78	$\overline{2}$
Mittelwert für			$\operatorname{Ga}(2)$	3,16	2
K. Z. = 8:	2,62		$\operatorname{Ga}(3)$	2,88	1

Tabelle 3 b. Interatomare Abstände für Ir₃Ga₅ (< 3,2 Å)

Die Abweichung von den ursprünglich angenommenen idealisierten Strukturen beträgt maximal 0,05 Å für Rh; 0,06 Å für Ir und 0,04 Å für Ga. Die interatomaren T—Ga- und Ga—Ga-Abstände (< 3,2 Å) sind in Tab. 3 enthalten.

Die in der c-Richtung aufeinanderfolgenden T-Metallatome zeigen den gleichen periodischen Wechsel in der Koordination, wie er bei den Germaniden beobachtet wurde⁷. Ein derartiger Übergang von einer verzerrten, TiSi₂-ähnlichen Koordination (K. Z. = 10 bei TiSi₂) zu einer Achterkoordination erfolgt bei Ir₃Ga₅ einmal und bei Rh₁₀Ga₁₇ dreimal pro Elementarzelle, entsprechend dem Index m in T_nB_{2n-m} (Ir₃Ga₆₋₁ bzw. Rh₁₀Ga₂₀₋₃).

Die Berechnung der Korrekturfaktoren für die Intensitäten, der Strukturfaktoren und *Fourier*-Synthesen sowie der interatomaren Abstände erfolgte mit eigenen ALGOL-Programmen (ALCOR-Illinois 7040).

Die Rechenarbeiten wurden mit der IBM 7040-Rechenanlage des Instituts für numerische Mathematik der Technischen Hochschule Wien durchgeführt, wofür wir dem Institutsvorstand, Herrn Prof. Dr. H. Stetter, bestens danken.